über Mittag schlafen - ترجمة إلى إنجليزي
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

über Mittag schlafen - ترجمة إلى إنجليزي

ENTIRE FUNCTION DEPENDING ON TWO COMPLEX PARAMETERS Α AND Β
Mittag-Leffler funcion; Mittag-leffler function; Mittag-Leffler Function
  • The Mittag-Leffler function can be used to interpolate continuously between a Gaussian and a Lorentzian function.

über Mittag schlafen      
have an afternoon nap
linear transformation         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
lineare Umwandlung
sea level         
  • Sea level sign seen on cliff (circled in red) at [[Badwater Basin]], [[Death Valley National Park]]
  • [[Geoid]]}}
  • Melting glaciers are causing a change in sea level
  • Global sea level during the [[Last Glacial Period]]
  • atmosphere]] and [[glacier]]s
  • in}} during the 20th century (2 mm/year).
AVERAGE LEVEL FOR THE SURFACE OF ONE OR MORE OF EARTH'S OCEANS
Mean sea level; Sea Level; Sea-level; Sea levels; Eustasis; Mean sea-level; Eustatic change; Eustacy; Sealevel; Eustatic; Eustatic movements; Mean Sea Level; Höhe über dem Meeresspiegel; Mean level of the sea; Höhennormal; Glacio-eustatic; Median sea level; Sea-levels; Global mean sea level
Meeresspiegel, Meereshöhe

تعريف

uber
meaning really or a lot of. it's used by geeks everywhere, and it's german. i have no idea who started it in it's geeky context in north america tho. it can be used as a prefix to almost any descriptive word.
that k10k site is uberpixelly-smooth. also, burgerking whoppers are uberyummy!

ويكيبيديا

Mittag-Leffler function

In mathematics, the Mittag-Leffler function E α , β {\displaystyle E_{\alpha ,\beta }} is a special function, a complex function which depends on two complex parameters α {\displaystyle \alpha } and β {\displaystyle \beta } . It may be defined by the following series when the real part of α {\displaystyle \alpha } is strictly positive:

E α , β ( z ) = k = 0 z k Γ ( α k + β ) , {\displaystyle E_{\alpha ,\beta }(z)=\sum _{k=0}^{\infty }{\frac {z^{k}}{\Gamma (\alpha k+\beta )}},}

where Γ ( x ) {\displaystyle \Gamma (x)} is the gamma function. When β = 1 {\displaystyle \beta =1} , it is abbreviated as E α ( z ) = E α , 1 ( z ) {\displaystyle E_{\alpha }(z)=E_{\alpha ,1}(z)} . For α = 0 {\displaystyle \alpha =0} , the series above equals the Taylor expansion of the geometric series and consequently E 0 , β ( z ) = 1 Γ ( β ) 1 1 z {\displaystyle E_{0,\beta }(z)={\frac {1}{\Gamma (\beta )}}{\frac {1}{1-z}}} .

In the case α {\displaystyle \alpha } and β {\displaystyle \beta } are real and positive, the series converges for all values of the argument z {\displaystyle z} , so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler. This class of functions are important in the theory of the fractional calculus.

For α > 0 {\displaystyle \alpha >0} , the Mittag-Leffler function E α , 1 ( z ) {\displaystyle E_{\alpha ,1}(z)} is an entire function of order 1 / α {\displaystyle 1/\alpha } , and is in some sense the simplest entire function of its order.

The Mittag-Leffler function satisfies the recurrence property (Theorem 5.1 of )

E α , β ( z ) = 1 z E α , β α ( z ) 1 z Γ ( β α ) , {\displaystyle E_{\alpha ,\beta }(z)={\frac {1}{z}}E_{\alpha ,\beta -\alpha }(z)-{\frac {1}{z\Gamma (\beta -\alpha )}},}

from which the Poincaré asymptotic expansion

E α , β ( z ) k = 1 1 z k Γ ( β k α ) {\displaystyle E_{\alpha ,\beta }(z)\sim -\sum _{k=1}{\frac {1}{z^{k}\Gamma (\beta -k\alpha )}}}

follows, which is true for z {\displaystyle z\to -\infty } .